3D RARE MILE

" TECHNOLOGIES PVT. LTD.

In this paper, we try to examine the challenges faced by developers
while working with AWS services of SimpleDB and SQS in terms of
performance. It includes a brief overview of Amazon Web Services

Offerings, what are the benefits they provide and how to make sure
that their performance is good.

Manish Singh,
Associate Technical Architect
Rare Mile Technologies
www.raremile.com

Amazon Web Services (AWS) is arguably the biggest player in field of cloud
services. With approx 1 million registered developers worldwide, around 9.1
billion of quarterly sales (as of July 2011) and more than 30 cloud related
services on offering, AWS is one of the most popular Web Services providers.
Most of the AWS offerings are cutting edge technologies, have high availability,
are supported for variety of platforms, scalable and also low cost which is an
important factor in growth of any new business related to IT.

Elastic Compute Cloud (EC2)

Simple DB

Simple Queue Service (SQS)

Other Service

Out of around 30 Service offerings from AWS, Amazon SimpleDB and Amazon
SQS are two upcoming services. With time, these are gaining a lot of popularity
and acceptance by a wide range of developers. Amazon SimpleDB is a highly
available and flexible non-relational data store that can be accessed using
Amazon defined web services. Developers simply store and query data items via
web services requests and Amazon SimpleDB does the rest.

Amazon Simple Queue Service (Amazon SQS) offers a reliable, highly scalable,
hosted queue for storing messages as they travel between computers. By using
Amazon SQS, developers can move data between distributed components of
their applications that perform different tasks, without losing messages or
requiring each component to be always available. Apart from SOAP and REST
Web Service APls, Amazon also offers SDK in different programming languages
(Java, .NET, PHP, Ruby etc) using which developers can easily communicate with
these services.

One of the big challenges that most new developers face with these two
technologies is Performance! Developers, by nature, focus on implementing the
functional features of an application and do not pay much attention to the non
functional features such as performance and scalability in the beginning. It is
only towards the fag end of the project that they take time out to focus on

issues relating to performance and then spend considerable amount of time to
fix performance issues. Anybody who has dealt with a performance issue can
vouch for the amount of work, retesting and balancing it takes to solve a
performance issue.

Sometimes this can lead to redesigning of many components of an application. Since
Amazon Web Services involves dealing with components which reside on remote
servers, performance becomes even more critical part of integrating AWS components
with the applications. If you think debugging performance issues in local applications is
tough, wait till you get to do it on a remote component. In this white paper we will go
through the problems related to performance in Amazon SimpleDB and SQS and
discuss some tricks to solve these issues. These are mainly based out of our experience
of dealing with these components and also based on some guidelines given in
documents related to AWS.

Before going into performance related complications, let us first get a small overview
about SimpleDB.

AWS Cloud
Amazon Simple

Your Application

SimpleDB is a data storage service provided by Amazon on its own servers. Anyone who
wants to use this needs to create an account with Amazon Web Services. After
registration, one can use SimpleDB APIs or language specific SDK (e.g. For Java, .NET
etc) provided by AWS for storage and retrieval of data. Here are some key points
related to SimpleDB:

» SimpleDB works on the concepts of domains, it is similar to the tables on oracle
or any other relational DBMS. Each domain contains an Item which should be
unique (this is equivalent to the primary key in Oracle etc). Each item contains a
set of attributes (equivalent to column in RDBMS). Every attribute has a name
and a value to store.

» SimpleDB does not implement SQL. It has it’s own limited set of commands to
perform create, read, update and delete operations on domain and items.
Similarly there are very limited set of inbuilt functions to operate on data.

» Amazon has pay per use policy. This means the amount you pay to Amazon is
dependent on the volume of data that you transfer from your SimpleDB
domains. There is no restriction on the number of domains you can create but

there are limits on the size of attribute names and values as well as amount of
data you can insert or query at a time.

» When you store data in SimpleDB domain, it replicates the data on many other
machines of same region as well. This is done in order to prevent data loss and
ensuring high availability. Since replicating the data takes some time, the data
stored in SimpleDB is not always consistent. However, it is guaranteed to be
consistent after a brief delay. This is called Eventual Consistency. Below is an
image explaining this phenomenon with comparison to a traditional RDBMS like
oracle.

AWS Region

With this background, let us look at some performance challenges which are peculiar to
SimpleDB. Since SimpleDB stores data on remote machines, the first problem is
obviously of latency and response time. Additionally, the eventual consistency
behaviour can cause some performance issues as well. Sometimes due to that if you
perform a read operation on the data that has just been written then you might not get
the updated data for some time. SimpleDB also applies throttling policies per domain.
This means after a certain number of requests have been serviced in a second,
SimpleDB will start giving service unavailable responses. Moreover, if you increase your
data size beyond a certain limit, then the response time increases, which means storing
data gets slower. SimpleDB also starts giving 503 service unavailable responses when
the data size in any domain becomes very large.

A queue provides a mechanism to transfer messages between two programs or thread
of the same program. Messaging queues promote an asynchronous means of
communications, meaning that the sender and receiver of the message do not need to
interact with the message queue at the same time. Messages placed onto the queue

are stored until the recipient retrieves them. Below is one image which explains
messaging queue:

Message Oriented
Middleware (MOM)

Amazon Simple Queue Service (Amazon SQS) offers reliable, highly scalable, hosted
gueues for storing messages as they travel between computers. By using Amazon SQS,
developers can move data between distributed components of their applications that
perform different tasks, without losing messages or requiring each component to be
always available. Amazon SQS provides simple, standards-based SOAP and REST web
services interfaces that are designed to work with any Internet-development toolkit.
Here is one example of Amazon SQS usage for order management project:

kCustomer

\ Reseller Amazon Manufacturer

Sales Person ‘
«—>
ation
51t Amazon Order processing
| SQs service

T A=

Order fulfillment and
inventory managment

e service \ / \ /

Here are some key points related to Amazon SQS:

» Amazon SQS provides APIs for creating/deleting queues and sending/receiving
data in queues. One can create as many queues as needed.

» When a message is received, it becomes “locked” while being processed. This
prevents multiple processes from processing the message simultaneously. If th

message processing fails, the lock expires and the message becomes available
again. In case where the application needs more time for processing, the “lock”
timeout can be changed dynamically via an APl operation.

» Developers can securely share Amazon SQS queues with others. Queues can be
shared with other AWS accounts or with anonymous users. Queue sharing can
also be restricted by IP address and time-of-day.

» All messages have a globally unique ID that Amazon SQS returns when the
message is delivered to the queue. The ID is not required in order to perform
any further actions on the message, but it is useful for tracking whether a
particular message in the queue has been received. Amazon SQS supports up to
12 hours maximum visibility timeout for the 2009 and 2011 WSDLs.

As a service offered on the cloud, SQS has similar challenges as SimpleDB i.e.
latency, response time and consistency. Once you put a message on the queue, it
usually takes around one minute for that message to be available for reading. Also
there is no guarantee of the sequence in which a message is received after sending
to queue. This means that if you have sent three messages in the queue, there is no
guarantee that first message will be received first.

Now let us look at how to get around these performance issues. Since both
SimpleDB and SQS are cloud based services, there are some common tips of
managing performance for both of them. SimpleDB also involves some logic and
conditions while storing and retrieving data, so there are some performance tips
specific to SimpleDB. Let us have a look at the common things first.

Below are some of the things which can be done to improve performance for both
SimpleDB and SQS:

» Select the Nearest Region (End Point): This is the backbone for performance
improvement. Amazon provides servers in seven regions worldwide:

1. US East (Northern Virginia)

2. US West (Oregon)

3. US West (Northern California)

4. EU (Ireland)

5. Asia Pacific (Singapore)

6. Asia Pacific (Tokyo) and South America (Sao Paulo).

These regions are available for both SimpleDB and SQS. So depending upon
where your application will be used, you should set the nearest end point of
Amazon SimpleDB or SQS region. By default, sdb.amazonaws.com or
sqs.amazonaws.com point to the US East region. All the language SDKs provide
methods to set end point. You can utilize these to change end point to the
nearest region like sqs.us-west-1.amazonaws.com or sdb.us-west-
1.amazonaws.com and so on. More details are available on AWS site for these
products.

Using the nearest endpoint reduces latency and improves response time to a
great extent.

» Create Multiple Domains /Queues: As stated earlier, if the data size becomes
large in a SimpleDB domain or SQS queue, then it starts taking more time to
read or update those or even put new data. So in order to avoid that we need
to store those data either in new SimpleDB domain or create a new queue (in
terms of messages). In case the stored data is not needed any more, it should
be deleted from that domain or moved to an archived domain.

» Multithreading in Requests: AWS provide SDK for all major platforms, so if the
language supports multithreading then it is better to use that for parallel
processing. Multithreaded requests result in better throughput i.e. it will
increase number of transactions per Second (TPS).

» Use Batch Operations: Amazon also provides facility of batch operations to
put/delete data in SimpleDB and send/delete messages in SQS. By using batch
operations you can put/delete 25 items at one go in SimpleDB and process 10
messages at once in SQS. In normal circumstances you would have to send 25
and 10 requests respectively. By clubbing multiple requests together, you can
cut down on the latency and improve application throughput.

Here are some performance measurement tips related to SimpleDB:

» In SimpleDB, sorting is lexicographical. This means the data is sorted by
alphabets first, then digits. But SimpleDB does not support numerical sorting.
So, the number 10 will come before 2 if you try to sort numbers in ascending
order. In order to sort data numerically, the numeric attributes should be zero-
padded logically. Also, for dates use ISO8601 format, it works better with
lexicographical sorting.

» Try to use composite keys as item name wherever possible. Suppose if you have
to get data on the base of two attributes then in that case you will have to use
AND clause after WHERE clause in query which makes data retrieval slow. So if
you give your item name as combination of these two attributes and make it
unique, it will improve the performance.

For example instead of using:

SELECT * FROM DOMAIN_NAME where FIRST_NAME="FIRST’ AND LAST_NAME =
‘LAST’;

it’s better to use
SELECT * FROM DOMAIN_NAME WHERE itemName = ‘FIRST:LAST’.

The bottom line is to avoid using conditions in query to improve performance.
Use them very rarely.

» It's a known thing that if you use consistent read parameter as true while
reading data then it impacts performance. So if you require transactional

guarantees for certain data, use Conditional Puts. You can optionally also use
Consistent Reads, but it is not required. In SimpleDB, data consistency comes at
the cost of performance. So if you are doing a read just after write, avoid using
consistent read = true unless it’s critical and necessary. Below is an image that
shows the variation in response time while using consistent read for single as
well as multiple items.

80000

20000 === Single item, GetAttribute

\ == Single item, GetAttribute ConsistentRead
60000 = 1000 items, GetAttribute —
\\ == 1000 items, GetAttribute ConsistentRead
50000

40000

30000

Total timein ms

20000

10000

0 1 T T 1
20 40 60 80 10(
Num of threads

» By default simple db returns 100 records for one select query. You can increase
the limit to maximum of 2500. It is helpful when you know that your query will
return more than 100 items. Otherwise you will need to make multiple queries
to domain to get complete data.

» We need to avoid non-indexed queries. Avoid queries like:

select * from MY_DOMAIN where SOME_ATTRIBUTE is NULL.

These queries are not indexed and can result in an unpredictably long cycle of
null results and next-pointer following. If you plan to do this query for

customer-facing applications, you must use a pseudo-null i.e. a default value for
null. This will allow you to do queries like:

select * from MY_DOMAIN where SOME_ATTRIBUTE = ‘my-pseudo-null’

» Avoid carrying multi-table relationships into the cloud in the form of multi-
domain relationships. Try to de-normalize these relationships into single items.
Doing joins in the application tier might require multiple round-trips to SDB and
open customer-facing functionality to time-outs.

» Since writes are throttled to SimpleDB domains, shard (i.e. break or partition)
your domains to scale write traffic if you expect to do more than 70 singleton
puts/second at any point in the future. Also, if you ever need more than 1
billion attributes or 10GB of space, shard your domains.

So now we have gone through some details of Amazon SimpleDB and SQS,
performance related challenges and steps to improve performance for those. The
base for performance improvement is to chose the nearest AWS region, try to send
more data in less number of requests (i.e. use batches for operations) and avoid
making complex queries to data (in case of SimpleDB. Following these steps will
help making you life a bit easier while doing development and save a lot of time of
rework which you can utilize spending with your family and friends.

* http://aws.amazon.com/simpledb/

* http://aws.amazon.com/sqgs/

* http://practicalcloudcomputing.com/post/712653349/simpledb-essentials-
for-high-performance-users-part-1

* Documentation available on Amazon website related to their product suit.

